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PROGRESS REPORT,  1998-1999, Year 2, DAMD17-97-1-7130 
COMPUTER-ASSISTED VISUAL SEARCH/DECISION AIDS AS A 
TRAINING TOOL FOR MAMMOGRAPHY. 
C.F. NODINE, PI 

(5) INTRODUCTION: 

This project focuses on the training of diagnostic interpretation skills in mammography 
which are acquired primarily as a result of medical training and experience reading 
mammograms. These skills take years of formal training and mentoring experience with 
experts who help interpret and illustrate a variety of abnormalities in breast images. 
Although medical training is typically rigorous and systematic, the mentoring experience 
during radiology residency in mammography varies widely from one teaching institution to 
another. The primary aim of this project is to develop a computer-assisted mammography 
training tool that will act as a surrogate mentor in aiding radiology residents in making 
plausible diagnostic decisions. We emphasize plausible diagnostic decisions as the end 
result of medical problem solving, because in clinical mammography resident rotations, 
diagnostic truth is typically defined as agreement after mammographic assessment between 
a radiology resident and mentor rather than by gold-standard pathologic truth. We propose 
to provide computer aids that will interact with the resident immediately after image 
interpretation by providing systematic feedback about visual search, detection and decision 
making. This feedback will point out, by highlighting, what areas of the mammogram 
receive prolonged visual dwell and decision time. These two parameters, visual dwell and 
decision time, predict regions of suspicion on the mammogram (Krupinski, Nodine, 
Kundel, 1998; Nodine, Kundel, Mello-Thoms et al, 1999). The resident is then asked to 
reexamine the highlighted areas, determine if any abnormal features are present, and 
reevaluate the original diagnostic decision. This reevaluation of suspicious regions with 
feedback provides the basis for a plausible problem-solving solution based on the 
individual observer's initial perceptual analysis of the mammogram. We showed in 1990 
(Kundel, Nodine, Krupinski, 1990) that computer-assisted visual search (CAVS) is 
effective in improving the detection of lung nodules, and Krupinski (1996) showed that 
visual dwell predicts the location of true and false, positive and negative decision 
outcomes. Our goal is to apply CAVS to mammography training to see if we can enrich the 
learning experience of radiology residents during training and thus improve their diagnostic 
interpretation and problem-solving skills. 

(6) BODY: 

(6.1) OBJECTIVES. Work Completed from July 1, 1998 to June 31, 1999 based on 
the approved Statement of Work. 

(6.2) TECHNICAL OBJECTIVE 2, TASK 3: COLLECT MAMMOGRAM 
CASES; DIGITIZE COLLECTED MAMMOGRAMS; CONSTRUCT A 
TRAINING SET OF BREAST LESION IMAGES. As stated in the Progress 
Report for year 1, we have been working on Technical Objective 2. We have completed 
digitization and construction of the training set of mammograms and developed three test 
sets of mammograms from it. One test set consisting of 75 mammogram cases (2 views, cc 
and mlo) was used in the expertise study (See Appendix 1). A second test set consisting of 
40 mammogram cases is currently being used in a study designed to measure the role of 
eye fixations in visual search and detection of subtle lesions. In total, we have digitized 325 
mammogram cases (1150 images) of which all but 75 have been digitized at 50 micron 
pixel size. The 50 micron cases will be used to construct a training set of mammograms to 
be used in the CAVS study in years 3 and 4. TASK 3 COMPLETE. 



(6.3) TECHNICAL OBJECTIVE 2, TASK 4: OBTAIN MAMCAD; 
INTEGRATE TRAINING SET INTO MAMCAD. Instead of obtaining MAMCAD 
from Dr. Alastair Gale at the University of Derby, we have decided to develop our own 
alternative to MAMCAD for Task 4 which, rather than analyzing the image for features 
signaling abnormality, analyzes the observer's decision time and confidence for correctness 
based on predictions derived from ANN. This ANN program, as we presently conceive it, 
would prompt the observer about the probability of making a false positive after decision 
time exceeded the observer's threshold for true positives. We have developed an Artificial 
Neural Net (ANN) program based on decision time data obtained from the expertise study 
(See Appendix 1). This program uses decision time to differentiate true positives from false 
positive decision outcomes for individual observers having different levels of 
mammography interpretation skill. We are currently testing the efficacy of this ANN 
program as part of TASK 5. Finally, as part of TASK 5, we have completed the Resident 
Study which is now referred to as the "Expertise Study" (See Appendix 1). the main 
findings are summarized below. TASK 4 COMPLETE; TASK 5 IN PROGRESS. 

(6.4) TECHNICAL OBJECTIVE 1, TASK 1: PROGRAM ASL MODEL 
4000; TASK 2: MODIFY EYE-POSITION DATA COLLECTION 
PROGRAMS AND DEVELOP AND INTEGRATE DETECTION 
ALGORITHM WITHIN PC WINDOWS 95 ENVIRONMENT. We have 
completed TASK 1. We have programmed the ASL Model 4000 to monitor the observer's 
eye position relative to head motion for digital mammography displays. We have also 
completed TASK 2. We have modified eye-position data collection programs 
(EYEPOS/EYEDAT) to accommodate a visual-dwell detection algorithm, and tested the 
integration of the detection algorithm for use with visual feedback of dwell locations on the 
PC display workstation. It will be necessary to send eye position data from the ASL 4000 
computer to the Windows 95 environment, analyze eye fixations and identify image 
locations that receive prolonged visual dwell. This has created a problem for us because the 
Windows 95 requires a special software driver (DLL) to communicate between the ASL 
4000 DOS system and Windows 95. We do not have the technical expertise to write a DLL 
Windows 95 software driver, but have consulted with ASL and they have agreed to solve 
this problem for us. It will cost $3500. which is available in the equipment budget. TASK 
1 COMPLETE; TASK 2 IN PROGRESS. 

(6.5) COMPLETION OF THE RESIDENT STUDY(EXPERTISE STUDY). 
In order to complete Task 5, we carried out a study that examined how training and 
experience influence mammography expertise using a subset of digital mammograms from 
the breast-lesion image training set developed in Task 3. This was known as the "Resident 
Study" and is now referred to as the "Expertise Study". The purpose of this study was to 
explore how training via clinical mammography rotation influences several aspects of 
perceptual performance in breast screening by comparing three levels of mammography 
expertise exemplified by mammographers, radiology residents and mammography 
technologists who differ in both training and experience reading mammograms. The 
research question was: How does training affect residents' accuracy in visually 
differentiating malignant from benign lesions in a simulated mammography screening task? 
The answers are summarized below. 

(6.6) SUMMARY OF MAMMOGRAPHY EXPERTISE STUDY. The complete 
final draft of this paper can be found in Appendix 1. The key findings from this study can 
be summarized as follows. Figure 1 shows the result of a regression analysis of overall 
detection performance measured as Al, the area under the Alternative Free Receiver 
Operating Characteristic curve, as a function of log (base 10) number of cases read over a 
3-year period by 3 experienced mammographers and 19 radiology residents and fellows 



undergoing clinical mammography residency rotation. Figure 1 shows a significant linear- 
regression fit of the data (R.2= .667) with a positive slope suggesting that reading-skill as 
reflected by Al performance increases directly with log case-reading experience (F (1,22)= 
44.15, p<.0001). 

A1 

2 3 
Log case readings 

When case reading experience is zero, the regression line intercepts the y-axis at Al=.393 
which is close to chance performance (0= chance). With mentor-guided case-reading 
training and experience, Al performance increases. The numbers and letters within Figure 
1 indicate the level of training of the observers: 1 = first- and second-year residents, 3 = 
third- and fourth-year residents, f = fellows and m= mammographers. Overall 
performance, Al, increases as a function of log (base 10) case reading experience. Figure 1 
indicates that overall performance is directly related to training and experience reading 
mammograms with mentor guidance. 

As a result of lack of reading experience, radiology residents performed significantly below 
their radiology mentors (Average Al= .840 for mentors vs. Average Al= .653 for 
residents, p<.01, Scheffe test). Residents performed at about the same level as 
mammography technologists (Al= .592 for technologists). This is shown in Figure 2. 
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The lower performance of radiology residents and mammography technologists is due to 
both failure to recognize true lesions (misses) and errors of commission (false positives). 
These differences in mammography reading skill are reflected in the speed-accuracy 
relationship shown in Figure 3. 
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The speed-accuracy relationship is measured by d', the index of detectability, as a function 
of decision time for mammographers, residents and technologists. Overall performance as 
measured by d', which is the normal deviate, z, of true positives/false positives, increased 
for mammographers and to a lesser extent for residents. Overall performance decreased 
below chance (d'= 0) for technologists meaning that false positives actually outnumbered 
true positives. 

(6.7) IMPLICATIONS OF EXPERTISE STUDY. The analyses of decision times 
in the Expertise Study reveal significant differences in perceptual discrimination, object- 
recognition and decision-making skills among three levels of expertise, which shed light on 
the need for systematic feedback training during the radiology residency experience. The 
impact of this type of training on the mammography expertise of radiology residents will be 
evaluated in a formal experiment after the development of CAVS. Future studies will 
explore the use of computer-assisted visual search (CAVS) as a training tool that provides 
systematic visual feedback and decision aids to improve residents' detection and 
classification of distinctive pathologic features that differentiate malignant from benign 
breast lesions. 

(7) KEY RESEARCH ACCOMPLISHMENTS: 

Our research studies have led to three key findings: 

1. Overall mammography diagnostic performance is log linearly related (base 10) to 
mammography reading experience according to a power law. This implies that reading 
experience is a major independent variable in the acquisition of mammography expertise. 

2. A key characteristic of mammography expertise is expressed by a speed-accuracy 
relationship. 

3. Mammography reading experience tunes visual perception and recognition skills 
underlying the speed-accuracy relationship. 

(8) REPORTABLE OUTCOMES: 

In addition to the work completed and in progress as discussed above, we have completed 
the following articles: 

1. "How Experience and Training Influence Mammography Expertise", 
ACADEMIC RADIOLOGY, 1999, in press (see Nodine, Kundel, Mello-Thoms et al., 
1999, in press, Appendix 1). 

2. "A Chronometrie Analysis of Mammography Expertise" was presented at 
Medical Imaging 1999, SPIE PROCEEDINGS 1999; 3663:146-150 (see Mello-Thoms, 
Nodine, Kundel, 1999, Appendix 2). 

3. "A Perceptually Tempered Display for Digital Mammograms", was presented at 
RSNA, 1998, RADIOGRAPHICS, 1999, in press (see Kundel, Weinstein, Conant, Toto, 
Nodine, 1999, in press, Appendix 3). 

4. "Enhancing Recognition of Lesions in Radiographic Images Using Perceptual 
Feedback" OPTICAL ENGINEERING 1998;37:813-818 (see Krupinski, Nodine, 
Kundel, 1998, Appendix 4). 

We are currently working on two papers: 
1. "The Effects of the First Response in Mammogram Reading: The Noise in the 

Head" which was presented at the Far West Image Perception meeting in British Columbia 
by Claudia Mello-Thoms. 



2. "The Nature of Expertise in Radiology" by CF Nodine & C Mello-Thoms which 
will be Chapter 8 in the SPBE Medical Imaging Handbook in 2000. 

(9)  CONCLUSIONS 

The primary goal of the project is to develop a mammography training tool that will 
improve perceptual and cognitive skills of observers leading to mammographic expertise. 
Prerequisites to this goal are an understanding of: (a) how mammographers are trained, (b) 
what skills are required to carry out the task of detecting, classifying and diagnosing 
abnormalities in mammograms, and (c) the effectiveness of current mammography training 
measured by evaluating the performance of residents using a test-set of mammograms 
representing various abnormalities. 

We are beginning to understand how mammographers are trained. Training consists 
primarily of an apprenticeship with an expert mammographer who serves in a mentoring 
relationship with radiology residents. The mentoring relationship is carried out during 
radiology residency in a series of clinical rotations consisting of two 4-week experiences. 
During the clinical rotations residents read both screening and diagnostic mammographs 
with a mentor. Residents compare diagnosis with mentors and receive feedback not only 
about the correctness of their decisions, but more importantly, the reasons behind these 
decisions. In reading mammogram cases, they learn to use BI-RADS to categorize and 
report diagnostic decisions. Part of their residency rotation experience also consists of 
follow-up procedures after diagnosing breast abnormalities. We have show that the amount 
of experience reading mammogram cases with a mentor (defined as deliberate practice) has 
significant impact on overall diagnostic performance. The residents that we studied at the 
University of Pennsylvania received an average of 645 case-reading experiences which 
from our regression analysis leads to a performance prediction that is well below acceptable 
clinical standards (see Figure 1). This brings us to the question of what skills need to be 
improved, and how can this be accomplished. 

Our research has focused on perceptual and decision-making skills in mammography. We 
have used eye-position recording to shed light on the role of visual search in diagnostic 
performance. Visual search skills translate into rapid image-perception assessment which 
leads to fast, accurate decision making as indicated by decision-time analyses. We have 
called this the speed-accuracy relationship (see Figure 3). Case-reading experience plays a 
key role in the speed accuracy relationship as shown by the shape of the d' curves which 
reflects overall performance (roughly true positives-false positives) as a function of 
decision time for different levels of mammography expertise. 

Finally, when we come to the question of how can perceptual and decision-making skills 
be improved? The answer that our research seems to be saying is: "Practice Makes 
Perfect". This is a deceptively simple answer. During their medical training, radiology 
residents have to learn much more than how to read mammograms, and there is simply not 
enough time in the radiology residency program to make expert mammographers. Rather, 
what may be needed is a more effective way to train residents during their clinical residency 
in mammography. Maybe we need to supplement apprenticeship mentoring by expert 
computer systems. Expert computer systems can provide systematic feedback tailored 
specifically to each resident's level of training and experience. We propose to use CAVS, 
which can be "tuned" to provide systematic feedback about regions of the mammogram 
deemed "suspicious" based on analysis of eye-position dwell times. Prolonged visual 
dwells will be used to localize image regions for re-evaluation and decision making. Thus, 
CAVS may hold the key to more effective mammography training. 
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ABSTRACT I 

Rationale and Objectives: Mammography expertise is characterized by fast, accurate 

diagnostic decision making. To evaluate the influence of perceptual and cognitive skills in 

mammography detection and interpretation, three groups representing different levels of 

mammography expertise in terms of experience, training and talent were tested using a combination 

mammography screening/diagnostic task. 

Materials and Methods: A set of 150 mammograms, unilateral CC and MLO views, 

one-third malignant lesions, two-thirds malignant free, were displayed in pairs on a digital 

workstation to 19 radiology residents, 3 experienced mammographers and 9 mammography 

technologists. Observers interacted with the display to decide whether each image contained either 

no malignant lesions, or, suspicious lesions indicating malignancy. Decision time was measured as 

lesions were localized, classified and rated for decision confidence. 

Results: Compared to experts, AFROC performance was significantly lower for 

residents and equivalent to technologists. Net result of analysis of overall performance was that as 

level of expertise decreased false positives exerted a greater impact on overall decision accuracy 

over the time course of image perception. This defines the decision-speed accuracy relationship that 

characterizes mammography expertise. 

Conclusions: Differences in resident performance resulted primarily from lack of 

perceptual-learning experience during mammography training which limited object recognition 

skills causing competition between true malignant lesions, benign lesions and normal image 

perturbations. A proposed solution is systematic mentor-guided training that links image perception 

to feedback about reasons underlying decision making. 

Keywords: Mammography Expertise, Perceptual and Cognitive Skills, Breast-Lesion Detection 

AFROC Performance, Decision Time, Feedback Training in Mammography 



INTRODUCTION » 

One of the outstanding characteristics of an expert in radiology is the speed and accuracy of 

deciding whether an abnormality is present on a medical image (1,2,3). Acquiring expertise in 

radiology requires specialized training, experience and some degree of talent. How much and what 

kind of training and experience has been the subject of an organized body of research that has 

emerged from the field of artificial intelligence (4,5). The present paper explores the roles of 

training and experience on the development of expertise in mammography by comparing the 

performance of experienced radiologists (mammographers), radiology residents and 

mammography technologists. Our study focused on the performance of the radiology residents 

who were receiving training and mentor-guided experiences during mammography rotations that 

presumably provide a basis for mammography expertise. 

It is difficult to find a yardstick to quantify the experience required to achieve expertise in 

mammography, but one could consider a reading on each case that results in a diagnostic report as 

a learning-experience trial. This ignores immediate feedback, which is important for perceptual 

learning, but is typically absent in clinical practice. In the context of medicine, training consists of 

mentored experience in which the resident reads medical images and then reviews them with the 

mentor. This training is designed to build feedback into the mentor-guided reading experience, but 

feedback is neither immediate nor systematic once the resident enters practice. If for the moment 

each read-and-reported case is considered an experience trial regardless of whether or not feedback 

accompanied it, it has been estimated (6) that expertise in mammography translates roughly into an 

average reading experience equivalent of about 10,000 cases over a period of three years. This 

amount of experience compares favorably with estimates of the number of games a chess player 

plays to reach grandmaster status (7). The average radiology residents' case-reading experience in 

a mammography rotation over 4 years is about 650 cases, of which only a dozen or less may be 

actual cancers. This means that extensive reading experience after residency will be required to 

reach proficiency as a mammographer. Thus, the amount of experience that a radiology resident 

receives in training is literally a drop in the expertise bucket. 



Visual search is important for detecting lesions in mammograms, but this search skill in   I 

experts seems to be specifically tuned for detecting breast lesions embedded in mammograms, and 

does not transfer to similar search tasks in which hidden words and figures are embedded in 

pictorial scenes (8). It may not even effectively transfer to reading x-ray images outside of the 

breast. Efficient search skills make expert mammographers fast, accurate recognizers, classifiers 

and decision makers. Eye-position studies have shown that experts are faster detecting lesions in 

chest or breast x-ray images than less expert observers, and that visual-gaze duration (dwell) which 

is assumed to reflect visual information processing is related to decision outcome (6,9). In general, 

observers dwell longest on areas where they report abnormalities, either true positives or false 

positives. Areas that are considered negative receive the shortest dwell times. False negative 

decisions are the exception. In many instances, observers dwell almost as long on areas that 

contain abnormalities but are reported negative as they do on similar areas that are reported positive 

suggesting that the area was troublesome even though reported negative. 

The fact that cumulative dwell predicts misses is important in the context of the present 

study, because it reflects recognition and decision making leading up to a diagnostic outcome in 

much the same way that decision time reflects the gathering of information leading up to a 

localization decision. However, visio-spatial localization of regions of interest obtained by eye- 

position recording cannot be derived from decision-time data. The analysis of visual dwell and its 

relation to information processing leading to a decision outcome suggests that Chronometrie 

analysis of the relationship between decision times and decision outcomes may compliment visual 

dwell data. Experimental psychology has studied reaction time, which is closely related to decision 

time in the present study, because it "...can help one trace the time course of information 

processing in the human nervous system" (10, p. 218). 

If the goal of mentor-guided experience during resident training is to provide the basis for 

expertise in mammography, then an important question is: What kind of skills are acquired? 

Previous research has helped to identify three general areas in which experts skills operate (a) 

visual search, (b) pattern and object recognition, and (c) decision making. Since a key 



characteristic of mammography expertise is speed-accuracy relationship in decision outcome, the I 

present study will focus on how decision making changes as a function of training and experience 

by comparing groups of observers differing on speed and accuracy dimensions. This entails 

measuring decision times of observers during mammographic interpretation on a digital 

workstation and analyzing their decisions by comparing them against a truth table. Three questions 

will be explored. First, how does performance change as a function of mentor-guided reading 

experience. Second, how does decision outcome relate to decision time for each decision event 

during image perception? Finally, what is the likelihood of true vs. false decision outcomes over 

the time course of image perception and decision making? This last question was first addressed by 

Christensen et al. (11). They were interested in the relationship between what they called search 

time and perception in the interpretation of subtle abnormalities and nonpulmonary lesions in chest 

radiographs. Search time was defined as how long it took to identify an abnormality, and since 

there was the possibility of multiple abnormalities per image, there could be multiple decisions per 

image. Each decision was timed and counted as a decision event. Maximum search time per image 

was 4 min., but most decisions took from between 1.84 and 2.68 min. on average. To compensate 

for the efficiency associated with faster search times, actual search time was adjusted by covarying 

it with the number of decision events within the maximum allotted search time per image. So 

experienced readers (faculty radiologists) made significantly more decisions in less time than 

inexperienced readers (radiology residents). By mapping the search times of decision events 

against a truth table they were able to plot the time course of true- and false-positive decision 

outcomes. The analysis of time-perception data revealed that true positives outpaced false positives 

throughout the time course of viewing for experienced readers, whereas false positives overtook 

true positives during the time course of viewing for inexperienced readers. 

MATERIALS AND METHODS 

The mammography test set consisted of craniocaudal (CC) and mediolateral oblique (MLO) 

paired views from 78 unilateral mammogram cases for a total of 156 images. The images were 

digitized on a Lumiscan Model 100 digitizer (Lumysis Inc., Sunnyvale, CA) using a 100 micron 

spot size. The mammograms were of a single breast selected by two mammographers (SO and DS) 



from a database of mammography cases taken from the archive of the Hospital of the University of 

Pennsylvania. These mammographers were later used in the study, but more than two years had 

elapsed prior to their testing, and each mammographer contributed only about half of the 

mammograms to the test set. The mammograms were assembled from cases classified by 

mammography assessment as normal for at least 2 years, cases classified by mammography 

assessment as benign with biopsy proof of benignancy and cases classified by mammography 

assessment as malignant with biopsy proof of malignancy. The test set contained 25 cases with 15 

instances of malignant masses and 14 instances of malignant calcifications showing on both views, 

one instance of an architectural distortion underlying malignancy on both views of one breast and 

one instance of a single malignant calcification present on only one view. There were 24 cases with 

12 instances of benign masses and 12 instances of benign calcifications showing on both views 

and 26 cases considered normal. In addition there were three practice cases: two showing lesions 

on both views and one lesion-free normal. Two mammographers (SO and DS) selected 

mammograms cases containing subtle benign and malignant lesions. Many of the normal 

mammograms contained ambiguous image perturbations and thus were considered "difficult 

normals" by the two mammographers. 

The test set was displayed on a single 19-inch gray scale monitor (GMA 201, Tektronix, 

Beaverton, OR) interfaced to a Sun Sparc 10 computer (Sun Microsystems, Sunnyvale, CA). At 

the time of testing the brightness of the monitor was 127 cd/m^. This brightness level is low for 

current state-of the-art mammography displays, and may have led to higher than normal error rates, 

at least for inexperienced viewers. Each display consisted of two views of a single breast displayed 

in the center of the monitor at 2048 x 2048 resolution. The gray scale was adjusted for each image 

by the experimenters (CFN, HLK) to a setting that covered the gray-scale range of the breast-only 

portion of the image. The CC view was shown on the left half of display screen and the MLO on 

the right half of the display screen. This is not a typical format for reading mammograms, but we 

were interested in determining how well observers with different levels of expertise could locate 

lesions in two views. 



Three groups of observers representing different levels of mammography training and     I 

reading experience participated: staff mammographers with more than 5 years experience as 

dedicated breast imagers (n=3); second, third and fourth year radiology residents undergoing a 

mammography rotation (n=19); and, radiology technologists having 1-9 years experience in 

mammographic imaging, but no reading experience (n=9). 

The procedure for testing observers was similar to the interruption technique used by 

Berbaum et al. (12) to obtain response times during visual search. However, the observers viewed 

the images on a workstation. Lesion identification and decision confidence was entered by 

"clicking" with a mouse-driven pointer on a menu called up at the time that a lesion was localized, 

and the time from the onset of the display until a decision was made, referred to as decision time, 

was automatically recorded. The observers were told that they were being tested on their ability to 

screen for malignancy in a two-view mammographic display of a single breast. If a malignancy 

was detected, they were to move the cursor to the lesion location and click on it. This action 

recorded the lesion location and called up a special menu from which they could classify the lesion 

as mass, calcification or architectural distortion, and rate their level of suspicion of malignancy: 

definitely malignant; highly suspicious for malignancy; moderately suspicious for malignancy; and, 

low suspicion of malignancy. If the 2-view mammogram display was determined to be free of 

malignancy, then the observer clicked "Return to Routine Screening" on the general menu. If a 

benign lesion was detected, the observer was instructed to treat it like a lesion-free image and click 

"Return to Routine Screening". In addition to these instructions the observers were told to localize 

malignant lesions on both views if possible, and to point to the center in localizing masses and 

center of a group of calcifications. After three practice trials with the experimenter to familiarize 

themselves with the workstation cursor operations, observers were left to view the 75 case test set 

on their own. Viewing time per case was unlimited. Decision times were recorded each time a 

lesion was localized by cursor control, but the observers were not told that their responses were 

being timed. Since multiple responses were made per two-view image pair, each localization event 

signaled the occurrence and time of a decision indicating the presence of a true or false malignant 

lesion. Figure 1 shows how these events were translated into decision-times measures. For our 



analysis of decision times, we used the method of survival analysis to generate the cumulative tim* 

course of decision outcomes during the time course of viewing. Survival analysis has the 

advantage of adjusting individual decision times for decision outcomes per case by the total 

decision making time required for a case. Thus, our analysis of decision times focused on the 

cumulative number of decision events per group over the time course of viewing. This is similar to 

the Christensen et al. analysis which focused on the cumulative number of decision events per 

group over the time course of viewing 100 chest films. 

(Figure 1 here) 

Analysis of Decision Time and Performance 

Analysis of cursor events for localizing, classifying and rating lesions was accomplished 

by comparing the observers decisions against a truth table. The truth table was generated from a 

combination of mammographic assessment by two of the authors (SO and DS) and biopsy 

information on each case. Because all pairs of positive images contained at least two lesions, 

Alternative Free Response Operating Characteristic (AFROC) analysis was carried out treating the 

pair of positive images as the unit of analysis. This was consistent with the instructions for the 

task, and provided evidence on how well observers with different levels of mammography 

expertise coordinated lesion localization in a second view given lesion detection in the first view. 

For the AFROC analysis, 30 pairs of malignant lesions were identified as appearing on 25 

image pairs. These 60 lesions were counted in the malignant-positive category. The 24 image pairs 

containing benign lesions plus the 26 lesion-free images (total of 50 image pairs) made up the non- 

malignant category. In the AFROC analysis we counted all correctly localized lesions within plus 

or minus .41 cm of true location on the malignant two-view image pairs (2 standard deviations of 

mean accuracy of .28 cm for mammographers), and counted only the highest-rated false positive 

for the 50 non-malignant image pairs (equivalent to counting false-positive images or FPIs, see 

13). It should be noted that this performance criterion ignores classification information which we 
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felt unreasonably stretched the assumptions underlying the 2-Alternative Force Choice 1 

experimental framework. Basically, AFROC was designed to measure detection performance. 

However, because of the importance of the classification decision in mammography, we will 

provide a separate analysis of the classification data to show how this performance criterion is 

influenced by level of expertise. 

RESULTS 

Overall Performance 

Overall detection and localization of breast lesions was assessed as a function of level of 

expertise. We compared the area under the AFROC, Al,  for mammographers, residents and 

radiology technologists. The AFROC, alternative free response operating characteristic curve, plots 

the fraction of actual target locations reported (true positives) against the fraction of images with 

any false positives. In our case we plotted only the the highest-rated false positive on a normal or 

benign image. Figure 2 shows AFROC curves for the three groups. The average area per observer 

derived from analysis of variance of Al values was for mammographers .840 (.039), for residents 

.653 (.058) and for technologists .592 (.062). All of these are above chance performance which 

for AFROC is .000. Analysis of variance of Al values indicated, not surprisingly, that 

mammographers were significantly better in overall performance accuracy than either residents or 

technologists who did not differ from one another (p<.01, Scheffe test). By contrasting 

performance for these groups representing different levels of training and experience, we hoped to 

gain insights into the nature of mammography expertise. 

(Figure 2 here) 

Relation of Case Reading Experience to Development of Mammography Expertise 

In order to provide a clearer picture of how the three groups differ in experience reading 

mammograms, we obtained data on the number of mammographic reports generated by the 

residents and mammographers. The 19 radiology residents who were part of the study represented 



mainly third-year (n=7) and fourth-year (n=8) residents plus 4 fellows with mammography readirfe 

experience varying from 10 to 2,465 cases over a 3-year interval. Over the same period the 3 

mammographers read 9,459 to 12,145 cases. The relationship between Al and log number of 

cases read is shown in Figure 3 for all observers. Figure 3 shows a significant linear-regression fit 

of the data (R2= .667) with a positive slope suggesting that reading-skill as reflected by Al 

performance increases directly with log case-reading experience (F (1,22)= 44.15, p<.0001). The 

regression line intercepts the y axis at Al= .293 which implies close to chance performance with 

zero reading experience. A log scale was used to represent the effects of case reading experience 

because several investigators have suggested the relationship between practice and learning is best 

expressed by a power function (14). The range of case-reading experience in Figure 3 was from 1 

log case reading to 4.1 log case readings or about 10-12,000 cases. Two residents at the beginning 

of mammography training with little case reading experience performed at an Al of about .500. 

The fact that their performance is above chance at the beginning of the mammography rotation can 

be attributed to talent, and sub-specialty training in other areas of radiology. The training levels of 

the observers is indicated by the numbers or letters associated with the data points. The number 1 

indicates first- and second-year residents, 3 indicates third- and fourth-year residents, f indicates 

Fellows and m indicates mammographers. Overall performance increases in an orderly 

progression with training level. 

(Figure 3 here) 

Identification of Lesions in Two Views 

Our hypothesis was that one aspect of performance that might differentiate levels of 

expertise was how successful observers were at identifying pairs of lesions in a two-view (CC and 

MLO) display. This hypothesis was based on the assumption that when mammography experts 

detect a lesion in one view, they look for confirmation in a different view. Mammographers talk 

about using projective geometry principles to predict from the detected lesion to a likely "plane of 

interest" in which to search for the corresponding "depth" lesion projection. If a detected lesion can 
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be paired in a second view, this provides confirmation that it is a real target. To follow up on this! 

we analyzed malignant lesions (true positives) and benign lesions (false positives) that appeared 

on CC and MLO views per case by referring to the truth-table. The identification of paired 

localizations on lesion-free areas of images (false positives) was more speculative since these were 

imaginary. To account for paired localizations on lesion-free areas of images (false positives), we 

identified sequential decisions from CC to MLO view or vice versa that were classified as being 

malignant and of the same type (e.g. mass, calcification or architectural distortion). Consistent with 

the pattern of results in the AFROC analysis, the identification of paired lesions was related to level 

of expertise. Proportionally more paired lesions were reported, and correctly classified, for 

mammographers than residents or technologists. The proportion of correctly paired-lesions was 

.82, .56 and .50 for mammographers, residents and technologists respectively. Proportionally 

fewer lesions were seen and reported correctly in only one view by all groups, and the 

corresponding proportions were much lower: .14, .14 and .12, respectively. 

Decision Time and Decision Outcome 

The regression plot in Figure 3 shows the relationship between performance and case- 

reading experience. We hypothesized that the decision-speed accuracy relationship which is a 

hallmark of expertise should accompany this improvement in performance and so we looked at 

decision times as a function of decision outcome again taking into account that observers were 

interpreting a image pair containing CC and MLO views and thus possibly making two or more 

decisions per case. Paired decisions were broken down into those occurring to CC view on left 

side of display and MLO view on the right side of the display to identify the sequencing of 

decisions per case. For these paired decisions, decision times to the first decision were inversely 

related to level of expertise with mammographers significantly faster than residents (p<.01, 

Scheffe), and residents significantly faster than technologists (p<.0001, Scheffe). For 

mammographers compared to residents, 32% more of these first responses were TPs and they 

were reported faster than residents. Mean decision time for the first correct decision per pair was 

15.66 sec.v. 21.56 sec, t (376)= 3.91, p<.001. Technologists detected fewer TPs and took even 
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longer to decide (28.08 sec). Decision time was also inversely related to level of expertise in a    I 

similar pattern for classification of localized lesions. Mammographers correctly classified 38 per 

cent more lesions and did so faster than residents (p<.05, Scheffe), and technologists (p<.001). 

Mean decision time for mammographers was 16.51 sec. for classifying masses and 19.77 sec. for 

classifying calcifications. Both of these findings support the decision-speed accuracy relationship 

associated with expertise. 

Finally, to provide some perspective on how TP related to false negatives (FN) we looked 

at decision times when all lesions were completely missed on images containing malignant lesions. 

In this case, total image duration was assigned as the decision time. This might be considered a 

"clean" miss in that no lesion was reported even though it was present during the entire time that 

the image was examined. There were 51 percent clean misses out of 579 total false negatives, and 

there was little difference in mean decision times for this clean-miss FN category, ranging from 38 

to 46 sec. However, the standard deviations of the mean decision times ranged from 4.6 sec. (for 

mammographers) to standard deviations of mean decision times between 41.6 and 52.5 sec. (for 

residents and technologists, respectively) indicating much indecision in failing to make a positive 

report after examining two views of an image containing a truly malignant lesion in these latter two 

groups. The range of mean decision times for clean misses was longer than any of the other 

decision outcome categories and seems to complement the finding of prolonged visual dwell FNs 

obtained from monitoring eye position. Observers spent a longer time deciding to call a positive 

case negative. Overall, clean-miss FNs were significantly longer than TNs (t (864)= 4.22, 

p<.001). Of course, we cannot confirm that the true lesions were actually scrutinized from the 

decision time data, but the long decision times and wide variances suggest much uncertainty 

surrounding decision making. 

Relationship of Decision Time to Use of Confidence Ratings 

The similarity of the relationship of decision outcome to decision time for mammographers 

and residents suggests that they may be using similar underlying detection and decision strategies. 
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One measure that reflects underlying decision strategy is how observers used the confidence        t 

ratings in making decisions. It is reasonable to assume that the more sure observers are that they 

have detected a lesion, the faster they are at making a decision. Figure 4 shows the relationships 

between decision time and use of confidence ratings for the three levels of expertise. The general 

pattern for the mammographers and residents was that decision times were inversely related to 

confidence rating. The longest decision times were to definitely lesion-free images (rating=l) and 

the shortest decision times were to definitely malignant image locations (rating=5). This pattern 

suggests that both groups had a similar perceptual thresholding basis for decision which is an 

important factor in developing a decision-making strategy. The pattern for technologists showed 

virtually no relationship between decision time and use of confidence ratings. Only confidence 1 

ratings were prolonged, and there was no evidence of faster decision times as technologists 

increased their confidence rating that a malignant lesion was present on an image. 

(Figure 4 here) 

Time Course of Decision Outcomes 

So far, two interesting generalizations come out of the decision time analysis. First, the 

decision-speed accuracy relationship was found to be related to level of expertise. Figure 5 

summarizes the decision-accuracy relationship expressed by d' (cumulative) as a function of 

viewing time for mammographers, residents and technologists. Cumulative values for true 

positives and false positives to both normal and benign images on a per case basis (paired 

decisions) as a function of decision time were obtained from Survival Analysis. These values were 

then transformed using the formula d'= z (TP/30) - z (FP)/50) where z can be interpreted as a 

deviate of the unit normal curve. The formula can be thought of as correcting the true-positive 

fraction by the false-positive fraction. Decision accuracy consists of detecting perturbations in 

images, testing them for signs of malignancy, and correctly classifying them as masses, 

architectural distortions or calcifications. This complex decision requires discriminating malignant 

from benign lesions, and, malignant from normal anatomic variants in the breast image. Decision 
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accuracy can be expressed as Al, the area under the AFROC curve, or as d', the index of t 

detectability that is derived from the true positive fraction and the false positive fraction at a specific 

decision threshold as is shown in Figure 5. Looking at performance this way shows clear 

differences as a function of level of expertise. 

(Figure 5) 

Second, decision times were longer for false than true decision outcomes. We next 

consider whether these false decisions tended to occur early or late in the time course of image 

perception. We looked at both paired and single decisions. A paired decision is one in which the 

observer sequentially localized a suspected lesion (true or false) on both CC and MLO views. 

Figure 6 shows the mean number of paired true-positive decisions (TP) and paired false-positive 

decisions for normal regions of the images (FPN) and benign lesions (FPB) for mammographers, 

residents and technologists as a function of viewing time per case. Figure 7 shows the same plot 

for single decisions as contrasted with paired decisions. The most striking feature of Figure 6 is the 

high rate of FPNs relative to TPs for technologists for paired decisions, and in figure 7 the high 

rate of FPNs for all groups for single decisions. 

(Figure 6 here) 

(Figure 7 here) 

These plots show for mammographers that the rate of TP decisions is faster than FPN 

decisions, but FPN continues to plague performance throughout the time course of viewing. The 

FPB decisions drop out relatively early, and thus overall performance continuously improves with 

decision time until about 60 sec. Perhaps our mammographers should have considered stopping at 
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this point because FPNs increased faster than TPs. The rate of TP decisions is slower for resident 

due to continuous competition from FPN up to 60 sec. As with mammographers, the FPB peaks 

earlier. The technologists show a decrease in overall performance over time because they continue 

to make more FPN decisions than TP decisions. 

DISCUSSION 

Understanding the Nature of Expertise 

The goal of the present study was to better understand the nature of expertise in 

mammography. Expertise in mammography as we have defined it in this paper refers to diagnostic 

performance skills that enable the observer to localize a breast lesion and correctly decide that it is 

malignant or not on the basis of two views. Admittedly, our task was somewhat artificial in the 

sense that we mixed lesion detection which is the focus of mammography screening with 

diagnostic interpretation which is the focus of diagnostic follow up. The next step is to break the 

task apart and do it as a two-part test which will come closer to the BI-RADS format. Moreover, 

even though the diagnostic skills that we are studying are an essential part of mammography 

diagnosis, they are quite limited as only CC and MLO views were shown with no capability for 

prior studies or additional views, or magnification. Ordering additional special mammographic 

images such as spot compression or magnification views, and performing breast ultrasound which 

are an important part of mammography expertise were untapped in the present study. On the basis 

of the information these provide, the mammographer may decide the finding is normal, benign, or 

probably benign but recommend short-term follow up, or biopsy. 

Why are Experts Faster and More Accurate? 

Our analysis has related Al and d', measures of overall performance, to decision time in 

order to shed light on basic perceptual and decision-making skills. Differences in speed-accuracy 

between mammographers and residents seem to be related to the experience factor required to gain 

expertise as we have shown in Figure 3. This suggests that experts are more perceptually sensitive 
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in recognizing lesions than those with less expertise as a result of having read more mammogram I 

cases, seen more lesions and differentiated more lesions into malignant and benign categories. In 

practical terms this means that through massive amounts of experience experts became perceptually 

tuned to recognizing familiar common breast structures and detecting odd or novel variations in 

them. Three to five years of dedicated experience reading mammograms, impacts on perceptual 

learning by exposing mammographers to a wide set of breast-image configurations that represent 

most variations of normality and abnormality. We hypothesize that this concentrated case-reading 

experience with mammographic images impacts on perceptual learning by producing enhanced 

recognition skills akin to those attributed to chess grandmasters who, according to one estimate, 

are capable of recognizing on the order of 50,000 different chess configurations (7). It is unclear 

whether enhanced object-recognition skill is the result of the development of what the artificial- 

intelligence community refers to as chunking or template-retrieval structures that aid short-term and 

long-term memory (14), or as we have suggested, more critically tuned visual recognition as the 

result of learning and refining distinctive-feature information used to recognize deviations from 

prototypic normal breast structures (15, 16). 

Supporting the tuning of visual recognition argument, Sowden et al. (16) have shown that 

massed practice detecting calcifications in positive-contrast mammograms (bright target on dark 

background) positively transfers to a new task in which the calcifications are displayed in negative- 

contrast mammograms (dark target on bright background). This suggests that perceptual learning 

improves perceptual sensitivity in the detection of low-contrast targets. Massed practice was 

defined as a detection trial followed immediately by feedback about the correctness of observer's 

response. This improvement in perceptual sensitivity occurred even though the amount of massed 

practice was limited to 720 trials followed by the transfer test.  The key to improvement may be 

the feedback. Generalizing the Sowden et al. results, one can not help but wonder if the effects of 

reading experience would be facilitated by computer-assisted visual feedback about decision 

outcomes delivered for some subset of test cases in which truth could be verified, or at least 

agreement consensus reached. The purpose of systematic visual feedback is to make image 

perception and decision making an integral part of a perceptual-learning reading experience (6,17). 
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Expertise, Chest Radiology vs. Breast Radiology 

In interpreting performance differences we have to be careful to separate studies of 

expertise in chest radiology from those in mammography because chest radiology studies have 

emphasized the importance of input from peripheral vision in detecting pulmonary lesions. 

Peripheral vision is important during search for inconspicuous pulmonary lesions because there are 

many anatomic landmarks in a chest radiograph (e.g. heart, ribs, lungs, diaphragm), and it has 

been suggested that these anatomic landmarks act as a map helping peripheral guidance of search 

(18). Anatomic landmarks are few in the breast (e.g. nipple and pectoralis muscle), and breast 

structures that might serve as landmarks (e.g. blood vessels, ducts) are interwoven into the breast 

image to create texture differences that are probably too subtle to be selected by peripheral vision 

during search. As a consequence, rather than landmarks, we believe that perturbations in 

parenchymal structure caused by compression of the breast during imaging and desmoplastic 

reaction from a growing tumor provide focal points-of-interest during visual search. The 

superimposition of parenchymal structures tend to make them visually conspicuous. Because 

superimposition of parenchymal structures has the potential to mimic breast lesions, they may be 

detected by peripheral vision during the initial global survey and scrutinized during subsequent 

focal scanning, and falsely reported as true lesions. In the detection of breast lesions, it is not only 

important for the observer to recognize familiar features in the image but also to recognize odd or 

novel features, examine these in detail (as reflected by fixations and decision time), and weight 

their importance in making a decision (6,19). We assume that dwell time spent fixating the lesion, 

like time spent examining the image prior to making a decision, represents information processing 

time required to make a decision. 

Decision Strategies 

Our study has shown that residents develop similar decision-making strategies to those of 

experts. From a practical standpoint this suggests that resident training in mammography is 
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effective in providing a general framework for learning radiology image perception skills. But     I 

residents were inferior to experts in recognizing true breast lesions. We hypothesize that this 

weakness is due to primarily the lack of fine-tuned visual-recognition skills. Because feedback is 

recognized as a critical part of the reading experience that is built into the clinical mammography 

rotation, it is tempting to speculate whether providing computer-assisted feedback training could 

facilitate visual-recognition skills and bring resident overall performance closer to that of their 

mentors. Despite their limited perceptual experience, many of these radiology residents will join 

clinical practices and read mammograms as practicing radiologists. Does this mean that diagnostic 

performance of practicing radiologists will suffer as a result? Probably, since the overall average 

performance of the residents in the present study was Az= .743 which is 12% lower than the 

national average of Az= .845 for 108 US radiologists assuming that the case difficulty of the two 

test sets was approximately the same (20). 

Finally, we have showed that decision accuracy is directly related to amount of case- 

reading experience. At the present time many radiology departments keep track of the number of 

cases read by radiologists and residents, yet no recommendations have been proposed as 

standards. 

Our data support the need for minimum requirements in terms of number of cases readings 

such as those proposed by the latest FDA regulations. As of 28 April 1999 this requirement is 240 

case readings within last two years of residency. In addition, we believe that some less abrupt 

transition between residency and practice as for example double-reading experience during the first 

year of practice would greatly improve performance standards (23). 
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FIGURE CAPTIONS t 

Figure 1. Diagram showing the relationship between image-display presentation and decision 

events signalled by the observer clicking the location of a breast lesion on an image with the 

mouse. The measurement of decision times was from the onset of the image display to the onset of 

a decision event. Performance was measured for the task of reading a pair of breast images 

consisting of craniocaudal (CC) and mediolateral oblique (MLO) views. Therefore, more than one 

decision event was typically timed during each image-display presentation. Offset of the display 

occurred when the observer clicked on NEXT IMAGE. 

Figure 2. AFROC curves showing mean decision accuracy for experienced mammographers 

(n=3), radiology residents (n=19), and mammographic technologists (n=10). For this analysis it 

was assumed that there were 60 malignant lesions on 25 image pairs consisting of CC and MLO 

views, and that there were 50 malignant-free images. False-positives were counted only on 

malignant-free images. ROCFTT was performed after averaging over the confidence intervals for 

each group of observers. 

Figure 3. A regression analysis of overall performance measured as Al as a function of log 10 

number of cases read over a 3-year period by 3 experienced mammographers and 19 radiology 

residents undergoing clinical mammography rotation. When case readings is zero, the regression 

line intercepts the y-axis at Al=.393 which is close to chance performance. With mentor-guided 

case-reading training and experience, Al performance increases. The numbers and letters within 

the figure indicate the level of training of the observers: 1 = first- and second-year residents, 3 = 

third- and fourth-year residents, f = fellows and m= mammographers. 

Figure 4. Decision time as a function of decision-confidence ratings for mammographers, residents 

and technologists. A confidence rating of 5 indicated definitely malignant, 4 indicated highly 

suspicious for malignancy, 3 indicated moderately suspicious for malignancy, 2 indicated low 

suspicion of malignancy, and 1 indicated definitely malignant-free. 
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\ 
Figure 5. Speed-accuracy relationship as indicated by d', the index of detectability, as a function of 

decision time for mammographers, residents and technologists. Overall performance as measured 

by d' which is the normal deviate, z, of true positives/false positives increased for mammographers 

and to a lesser extent for residents. Overall performance decreased below chance (d'= 0) for 

technologists meaning that false positives outnumbered true positives. 

Figure 6. Cumulative mean number of paired decisions per case as a function of the decision time 

course of viewing for true-positive decision outcomes (TP), false-positive decision outcomes on 

non-malignant normal images (FPN), and false-positive decision outcomes on images containing 

benign lesions (FPB) for mammographers, residents and technologists. Paired decisions were 

measured. All but one mailgnant case contained lesions in both CC and MLO views. As this figure 

indicates, within 60 sec. mammographers had localized 23/25 or 92 percent of the paired true 

lesions. 

Figure 7. Cumulative mean number of single decisions as a function of the decision time course of 

viewing for true-positive decision outcomes (TP), false-positive decision outcomes on non- 

malignant images (FPN), and false-positive decision outcomes on images containing benign 

lesions (FPB) for mammographers (M), residents (R), and technologists (T). 
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A Chronometrie Analysis of Mammography Expertise 
Claudia Mello-Thoms1, Calvin F. Nodine and Harold L. Kundel 

University of Pennsylvania School of Medicine, Philadelphia PA 19104 

ABSTRACT 
This paper studies the effects of training and experience on decision time and performance in mammography. We compared 
the performance of three groups of observers representing different levels of expertise: dedicated breast imagers 
(mammographers), radiology residents undergoing a mammography rotation, and mammography technologists, when reading 
a test set that contains benign and malignant lesions, as well as lesion free images. We show that the number of cases read 
significantly impacts performance, as measured by the area under the AFROC curve. We also show that different levels of 
expertise have different decision structures during the time course of image viewing. In fact we show that the 
mammographers should stop reading an image after 60-80 seconds, because at this point they have found all of the true 
targets present, and they are much more likely to make a mistake. On the other hand residents and technologists mistakes 
plague their performance throughout the time course of image viewing. 

Keywords: expertise, mammography, AFROC analysis, time course of image viewing. 

1. INTRODUCTION 
Breast cancer is one of the leading causes of death among American women. It is estimated that one woman is diagnosed 
with this disease every three minutes, and from these, 46,000 will die each year (3). Many techniques are available for 
diagnosing breast cancer; the most widely used is Mammography, due to its cost/effectiveness ratio, which allows for the 
screening of large parcels of the population. It has been shown (4) that mammography screening leads to a reduction of breast 
cancer mortality of 29-45% in women in their forties, and 34% for older women. 

In this paper the roles of experience and training in mammography expertise are studied. We compared the performance of 
experienced radiologists dedicated to breast imaging (mammographers), radiology residents undergoing a mammography 
rotation and mammography technologists, when reading a test set composed of 78 two-view mammograms containing benign 
and malignant lesions, as well as lesion free cases. These three groups differ in their levels of formal learning (training) and 
total number of cases read (experience). As a consequence, the speed and accuracy relationship, which is a hallmark of 
expertise, is clearly observed in the decision structures of these three groups. 

Although it is almost impossible to find one measure that defines an expert in mammography, one can consider that each case 
read, with or without feedback, corresponds to a learning trial. In this sense it has been estimated (1) that expertise m 
mammography translates roughly to an average of 12,000 cases a year over a period of 3 years. If one considers that the 
average radiology resident sees, over a period of 4 years, around 900 cases, of which perhaps a dozen are actual cancers, then 
it becomes clear that many more years of dedicated work will be necessary to elevate that radiologist to the level of his or her 
expert peers. This paper will explore the relationship between the number of cases read and performance, as measured by the 
area under the AFROC curve. 

Also, the features that signal breast cancer may be very small and difficult to find. This is translated in a False Negative rate 
of 10 to 30%, of which 2/3 are seen in retrospect (2). Because these False Negatives (FNs) may have potentially deadly 
consequences, experts learn to over-read the cases, which generates high rates of False Positives (FPs). When these FPs occur 
in the time course of decision making will also be examined in this paper. 

2. MATERIALS AND METHODS 
The test set used consisted of 78 image pairs representing the cranial-caudal (CC) and the medial-lateral oblique (MLO) 
views of the breast. It was digitized using a Lumiscan Model 100 digitizer (Lumisys Inc., Sunnyvale, CA) using a 100 micron 
spot size. This test set was assembled from cases considered normal for two years by mammographic assessment and cases 
with benign and malignant lesions that were biopsed and thus confirmed as being either benign or malignant. 
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The test set was displayed on a single 19-inch 2048 x 2048 gray scale monitor (GMA 201, Tektronix, Beaverton, OR) 
interfaced to a Sun Sparc 10 workstation (Sun Microsystems, Sunnyvale, CA). Each display consisted of two views of the 
same breast: on the left hand side was the CC view, and on the right hand side was the MLO view. 

The observers were instructed to indicate malignant lesions only. They were free to search the image for as long as they 
wished. Upon encountering a malignant lesion, they were supposed to move a mouse controlled cursor to the center ofthat 
malignant lesion, and click. This action would cause a window to open, in which they had to indicate the type of the lesion 
(mass, calcification, architectural distortion), and their level of confidence that that lesion was indeed malignant (definitely 
malignant, highly suspicious for malignancy, moderately suspicious for malignancy and low suspicious of malignancy). Note 
that the observers were instructed to indicate the same lesion in the other view of the breast, if they could see it. If only 
benign lesions were found, the observers were instructed to go to the next image, by clicking a button entitled "Return to 
Screening". Similarly, if no lesions were found the observers were instructed to go to the next image. Also, in order to get 
information about the different experience levels, we obtained data on the number of mammographic reports generated by the 
residents and mammographers. 

3. RESULTS 
Detection and Localization of Malignant Lesions: We assessed the observers abilities to detect and localize malignant 
breast lesions as a function of the observers' expertise. The area under the AFROC, Al, was used to compare the three 
groups. The average area per observer derived from analysis of variance of Al values was .840(.039) for mammographers, 
.653(.058) for residents and .592(.062) for technologists. Analysis of variance indicated that the mammographers were 
significantly better (p<.01, Scheffe test) than either residents or technologists. Furthermore, these last two groups did not 
differ significantly from one another. 

Performance vs. Experience: The 19 radiology residents who were part of our study were primarily third- and forth-year 
residents, and three of them were fellows at the time of these tests. They had a mammography reading experience that varied 
from 10 to 2465 cases over a 3-year interval. Over the same period the mammographers read between 9459 and 12145 cases. 
The relationship between Al and the log (base 10) number of cases (we used the log because of the power law of learning 
(5)) shows a significant linear regression fit (R2=667), having a positive slope, which indicates that case reading experience 
indeed influences Al performance over a wide range of experience (F(l,22)=44.15,p<.0001). This is shown in Figure 1. 
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Figure 1. The 
roles of experience 
and training in 
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performance, 
as measured by 
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Note that the regression line intercepts the y axis at Al=293. This implies that, with zero reading case experience, the 
observers performed close to the chance line, which is A1=00 for AFROC. The fact that the performance is still above the 
chance line in the beginning of a mammography rotation can be explained by taking into account that these residents were 
already exposed to general radiology residence training. 

Decision Times vs. Decision Outcomes: We also looked at the decision times as a function of decision outcome. Note that 
because the observers were instructed to indicate the lesion pair (that is, the same lesion on both views of the breast), when 
possible, they made on average two or more decisions per case (a case being a set with two images, one CC and one MLO 
view of the same breast, displayed simultaneously). For these paired decisions, decision times to the first decision were 
inversely proportional to the level of expertise. The mammographers were significantly faster than the residents (p<.01, 
Scheffe test), and residents significantly faster than technologists (p<.0001, Scheffe test). When comparing the 
mammographers with the residents we found that 32% more of these first decisions were True Positives, and they were 
reported faster than residents'. Mean decision time for the correct decision per pair was 15.66 sec v. 21.56 sec, t(376)-3.91, 
p<.001. On the other hand the technologists detected even fewer True Positives, and did so at a much slower pace (28.08 
sec). 

Time Course of Image Viewing: Finally we looked at the question of when the True (TPs) and False Positive (FPs) 
decisions occurred in the time course of image viewing. We have divided the FPs into two types, namely, the ones that 
correspond to a benign lesion (that is, they are due to the actual presence of a lesion in the image, except that the lesion was 
benign), which we called FPBs, and the ones that were due not to the presence of lesions themselves, but rather to a 
misinterpretation of the image features, which we called FPNs. This is shown in Figure 2. 

Figure 2. Time Course of Image Viewing. The first curve shows the mean number of 
decisions for the mammographers as a function of time. Note that the FP curves do 
not overtake theTP curve for the initial 140 seconds of image viewing. The second 
curve shows how the residents perform under the same conditions. Note that there 
is much more competition among the FPs and the TPs. The final curve shows 
the results for the technologists. In this case the FPs overtake the TPs very early 
on, and this leads to fewer true lesions found and many more mistakes. 
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For the mammographers, although there is competition between the FPNs and the TPs during the time course of image 
viewing, the former never overcomes the latter, which provides further evidence that mammographers are in fact well framed 
target detectors. Furthermore, the FPBs are the first ones to die off, probably because, being the most common type of lesion 
seen on their daily practices, they are easier to discriminate from malignant lesions. For the residents the behavior is different. 
Although the FPNs never overtake the TPs, the competition is much more fierce. Moreover, there is also competition from 
the FPBs, which reflects the fact that the residents have been exposed to a smaller number of cases, and so to them it is harder 
to differentiate between benign and malignant lesions, as well as artifacts (that is, object-like structures that they may see in 
the image but that do not correspond to an actual lesion). 

The technologists behavior is quite different than the other two groups. Due to a combination of lack of formal training in 
reading mammograms and lack of experience in doing so, they use what we chose to call 'the shot-gun strategy'. This means 
that anything that looks even slightly suspicious gets called as being malignant. This low threshold forces them to make many 
False Positive calls, and these calls overtake, very early on, the decision course of the TPs. As a consequence the 
technologists not only make many more calls per image but also commit many more errors, and have the lowest rate of true 
malignant lesions found. 

4. DISCUSSION 
The analysis of our data from three perspectives, namely, performance, experience and decision time, has shown that the 
mammographers performed significantly better than either residents or technologists when reading a test set composed of 78 
two-view mammograms. We hypothesized that this better performance is directly related to the number of cases seen, 
because by seeing more cases they become more attuned to the features that signal a malignant lesion. They also become 
better at differentiating benign from malignant lesions, as well as they are less responsive to features in the image that 
potentially mimic a lesion, such as superposition of structures, etc. We believed that the number of cases seen has a reflection 
in the perceptual process, making the mammographers better target detectors and better target classifiers, in the sense that the 
memory schema for separating malignant from benign lesions is larger than that of either of the other two groups. 

We showed the importance of experience by the significant correlation between the logarithm of the number of cases read 
and the performance, as measured by the area under the AFROC curve. 

Furthermore, we have showed that the mammographers are significantly fester decision makers than either residents or 
technologists, and they are better at classifying lesions as being benign or malignant. They make many more first calls that 
are True Positives. Note that this reflects a speed-accuracy relationship, which is a hallmark of expertise. 

In order to understand when the True and False Positive calls are made during the time course of image viewing we have 
studied the decision behavior of the three groups. The mammographers, being better target detectors, find most of the TPs 
within the first minute of image viewing. Moreover, because of their familiarity with the benign lesions, they are able to find 
most of these within 30 seconds of viewing the image. The interesting information in this curve is that after 60 seconds their 
FPNs start to rise, and eventually they overtake the TPs. This seems to indicate that the mammographers would make less 
errors if they stopped reading the image after 60-80 seconds, while their TPs are still dominating the FPB and FPN curves. 

In the case of the residents this behavior is somewhat different, although the same pattern set by their mentors is present in 
that the TP curve still dominates the FP curves. In this case, however, competition is more fierce, as indicated by the longer 
decision times, and thus attention is very divided. The differentiation between the benign lesions (FPBs) and ones that are 
due to misinterpretation of image features (FPNs) becomes less pronounced, possibly as a result of having seen fewer benign 
lesions. Furthermore, the TPs have to constantly compete with these erroneous calls, which depresses the TP decisions. 

For the technologists the situation is even worse. Their perceptual decision making process appears to have a very low 
threshold, causing them to call anything that seems slightly suspicious in the image as being malignant. This behavior obtains 
that very early on the FPs overcome the TPs, which leads the technologists to make many more errors and to find many fewer 
true lesions. 
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5. CONCLUSIONS 

We have studied the roles of experience and training in mammography expertise. We have shown that not only is there a 
significant difference in performance as a function of level of expertise but also a difference in decision making strategies 
that impacts on decision time. 

Our results showed that the experts are faster and better at localizing malignant lesions in a mammogram test set. This is a 
reflection of the speed-accuracy relationship. Furthermore, our results have shown when the experts should stop reading the 
films, because at a certain point in the time course of decision making False Positives overtake the True Positives. Note that 
this results provide support for how the experts are better, but the problem of why they are better is still a very open one. 
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Abstract 

The cathode ray tube (CRT) of a workstation for use with digital mammograms 

was calibrated using a photometer to produce an input-output (I/O) characteristic curve 

similar to the perceptually linear curve defined by a current display standard. Then, a test 

pattern consisting of bars of increasing intensity containing disks of decreasing contrast 

was used by an observer to estimate the minimal detectable contrast (MDC) at different 

levels of display luminance. The MDC was modeled by a parabola. The shape of the 

parabola was determined by the observer's perceptual responses and the range by the 

maximum and minimum pixel values of the breast parenchyma. As each mammogram was 

displayed the contour of the breast was automatically found and pixels within the breast 

image were sampled to determine the pixel values that were used to compute the 

minimum and maximum pixel values. The parabola was integrated to determined the look- 

up table for the initial MDC tempered display of the mammogram. Preliminary observer 

performance tests showed no significant differences in the speed and accuracy of 3 

radiologists reading a set of mammograms on the MDC tempered display when compared 

with the perceptually linear display. 

This article describes preliminary observer tests of a method for the initial display of a 

digital mammogram that compensates for the display brightness, the ambient light and 

the useful range of pixel intensities in the image. 



INTRODUCTION 

Given the present state of the art, a static cathode ray tube (CRT) display can 

simulate but not duplicate the image quality of a film mammogram displayed on a 

lightbox. The film is displayed at higher luminance, has a greater spatial resolution and has 

a wider grayscale range (1). However, the film captures and displays the image using a 

fixed set of predetermined display parameters. An adjustable CRT display can be used to 

explore the full ränge of contrast and resolution available in the digital image by using 

image processing such as window-level and zoom-rove. Differences in the CRT input- 

output transfer characteristic and in the image processing that is applied to the digital 

image can result in wide variation in the base-line appearance of images. In order to have 

identical images look alike when displayed on different CRTs, a display standard called 

"perceptual linearization" has been proposed (2, 3). When this standard is used, equal 

changes in the pixel gray scale value produce equal changes in the just noticeable 

difference (JND) of luminance in the image. 

A display standard provides an equivalent starting place for each image but may 

not provide the best gray-scale transformation for a particular image in a particular reading 

environment. Human contrast sensitivity depends upon the average luminance of the light 

reaching the eye (4). Most of the light that affects contrast sensitivity comes from the 

displayed image, but some comes from room illumination including that which is reflected 

from the CRT surface. In order to maximize the contrast sensitivity of the eye, large 

variations in the brightness of the image can be modulated by modifying the distribution 

of the gray-levels over the image (5, 6). Liu and Nodine (7) using a model first proposed 



by Mokrane (8) have developed an algorithm that equalizes perceived contrast over the 

image assuming some starting level of adapting luminance. Contrast is modified in the 

image on the basis of the theoretical threshold-contrast curves of Heinemann (4). The 

workstation described here extends the work of Liu and Nodine (7) to include adjusting 

the gray-scale transform for ambient illumination and adjusting the mammogram image to 

fit the entire gray-scale range of the CRT. 

THE BASIC DISPLAY STATION 

The display station shown in Figure 1 uses a Gateway GP6-266 (Pentium 

processor) computer (Gateway 2000 Inc., Sioux City, SD) that is interfaced to an Orwin 

D2300L grayscale monitor (Clinton Electronics, Loves Park, IL) using a Dome Md5/PCI 

interface board (Dome Imaging Assoc. Waltham, MA). The computer software is written 

in IDL, a high level graphics language (Research Systems, Inc., Boulder, CO). 

Before using the display station the video monitor was photometrically calibrated. 

A Tektronix Model Jl 7 photometer (Tektronix, Inc., Beaverton, OR) interfaced to the 

computer was used to measure the intensity of a 10 x 10 cm. square of uniform luminance 

located in the center of the display surface. The intensity of the display surrounding the 

square was set at a luminance of 55 cd/m2 produced by a pixel driving intensity value of 

128. The luminance was measured over 17 equally spaced pixel driving intensity values 

from 0 (black) to 255 (white) corresponding to 1.7 to 343 cd/m2. The photometric data 

were digitized, log transformed, fitted with a 4th order polynomial using a least squares 

procedure and displayed on the CRT along with an ideal curve. The brightness and 

contrast controls were adjusted until the calibrated curve visually matched the ideal curve. 



Once the CRT is calibrated it only needs occasional adjustment. The shape of the I/O 

transfer characteristic adjusted according to the perceptually linear display standard is 

shown in the top half of Figure 2. 

DEVELOPING THE PERCEPTUALLY TEMPERED DISPLAY 

Estimating the Minimal Detectable Contrast (MDC) 

The MDC test pattern, shown in Figure 3 consists of 8 horizontal bands of 

increasing intensity. Each band contains 8 circular disks of decreasing contrast. It was 

displayed for each observer prior to a viewing session. The observer's task was to choose 

the "least visible" disk in each band. The observer's responses are affected by the display 

contrast and the ambient room lighting. The contrast of each indicated disk was used to 

fit a 2n degree equation, where the independent variable is the driving level of the 

intensity of the band and the dependent variable is the contrast of the target chosen by 

the observer measured in pixel driving level units. These data are used to approximate the 

dependence of the observer's contrast-sensitivity on adapting luminance. 

Approximation of the Contrast Sensitivity Curve by a Parabola. 

Heinemann (4) measured human contrast-sensitivity at different levels of adapting 

luminance. Examples of the relationship at two adapting luminance levels are shown in 

Figure 4. When the adapting luminance increases, the curves shift to the right and roughly 

maintain the same shape. Applying a bright spotlight to the image shifts the observer's 

curve to the right and increases the contrast sensitivity. Many attempts have been made 

to fit the curves from Heinemann's experimental data with simple equations (5). The 

algorithm of Liu and Nodine (7) required advanced information about adaptation level and 



was computationally intensive. We simplified the Liu-Nodine algorithm by assuming that 

a parabola could be used to approximate contrast-sensitivity at different levels of 

adapting luminance (see dashed lines Figure 4). The fit is reasonable at high adapting 

luminance levels, corresponding to dense breasts and at scene luminance levels below the 

adapting luminance for both bright and dark images. The fit for regions brighter than the 

adapting luminance is not very good when the adapting luminance levels are low. We 

accepted this lack of a perfect fit in order to increase the contrast in the parts of the image 

that appeared dark and rapidly compute the look-up table for the correction. The shape 

of the parabola for each observer was determined from the MDC data and the range of the 

parabola was computed individually for each image. For example, a dark image from a' 

fatty breast would have a different range than a bright image from a dense breast. A 

different look-up table is required for each image. 

The best-fit parabola is integrated and normalized to the display intensity range of 

the mammogram to yield a continuous, non-linear lookup table that boosts contrast in the 

intensity bands that require higher contrast for detection of low contrast targets. Due to 

dynamic range limitations of the monitor, contrast enhancements in some segments of the 

lookup table require contrast reductions in other segments, thus producing a contrast-' 

tempered lookup table. The MDC lookup table is designed to equalize the detectability of 

equal contrast (pixel driving level) targets, regardless of the regional mean pixel intensity 

surrounding the targets. The advantage of redistributing the contrast in this "tempered " 

fashion is to provide an initial view that allows visual access to the dark regions (skinline) 

as well as the light regions (muscle, dense tissue). 



Matching the Look-up Table to the Pixel Intensity of the Mammogram. 

As each case is displayed, the maximum and minimum pixel intensity in the breast 

parenchyma is determined by sampling over a region that includes breast tissue out to 

just beyond the skinline, thus excluding the extremes of pixel driving levels due to lead 

markers, labels and cassette edge artifacts. This is done using a boundary detection 

procedure, where after applying a median filter, an intensity threshold value 5% above 

the background (dark level) is selected. Using this threshold, the image is transformed to a 

binary image and a contour is determined on the resultant image. Image intensities are 

then sampled on the original breast image along 30 equally-spaced lines as shown in 

Figure 5. The maximum and minimum pixel driving levels are then applied to the MDC 

corrected lookup table so that the output intensity just matches the input intensity as 

shown in the bottom half of Figure 2. All of the calculations and look-up table 

manipulations are done using a 12 bit pixel intensity scale. The scale is transformed into 

an 8 bit scale for display. 

Displaying the Images 

The CRT is photometrically calibrated as part of the regular quality assurance program. 

The MDC calibration is performed before each reading session with the ambient 

illumination set at 1.6 Lux at the location of the observer's eyes. The calibration takes 

approximately 15 to 20 seconds to complete. The correction of each image is done off-line 

prior to the test. Observers are able to use a single slider to adjust the linearity of the 

MDC lookup table.   The slider can smoothly adjust the gamma from an linear lookup 

table up to a maximum MDC setting. Figure 6 shows a breast image displayed using the 



Standard perceptually linearized display and the MDC tempered display. Notice the 

difference in the visibility of the skin line (shown by the solid arrow). 

EVALUATING THE DISPLAY STATION 

Our development cycle includes periodic benchmark testing using a sample of 

cases from a database of normal and abnormal mammograms where all of the malignancies 

and many of the benign lesions are histologically proved. Readers are shown a cranio- 

caudal (CC) and a medio-lateral oblique (MLO) view and asked to move a pointer on the - 

display to any potential malignant lesion and click on the mouse. Response time from the 

start of viewing each case and the location of the pointer is recorded by the software. 

After the click, a pull-down menu appears and the reader must select one or more of 

mass, calcification or architectural distortion and indicate a confidence in malignancy. 

These data are used to compute a receiver operating characteristic (ROC) curve and 

determine the area under the curve. Three readers, two mammographers and a general 

radiologist were given the test using 75 mammograms: 25 with malignancy, 25 with benign 

lesions and 25 normals. Table 1 is a comparison of the area under the ROC curve. 

Although each reader did better with the MDC corrected tempered display, the difference 

is not significant when tested with a paired t-test. The time to first point out a lesion was 

very variable but on average was not different for the two display modes. 

SUMMARY 

The speed and accuracy of the tempered display function is equal to the standard linear 

display function when used on a moderately bright monitor (300 cd/m2). The initial view 

of the image provides visual access to lighter and darker regions of display with some 



sacrifice to middle intensity regions. The display can be linearized by moving a single 

slider. This is an attempt to simplify the user interface. Development of the display 

station is continuing with the addition of the use of verbal commands to modify display 

parameters and an eye position contingent roving window. 
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LEGENDS 

Figure 1. The digital mammography workstation. 

Figure 2. The bottom curve is a final MDC lookup table and the top curve is the CRT 

input-output transfer characteristic. Both curves share a common pixel driving level axis. 

The non-linearity of the MDC curve is exaggerated for illustrative purposes. The actual 

- difference from the linear curve is usually more subtle. The effect of the MDC lookup 

table on the displayed image can be seen by following the dotted lines that extrapolate 

from the image pixel value to the display luminance. 

Figure 3. The minimal detectable contrast (MDC) test pattern with typical observer 

responses indicated by the stars. 

Figure 4.   The solid lines are examples of two contrast-sensitivity curve from the work of 

Heinemann (4), one with an adapting luminance at 10 cd/m2 and the other with an 

adapting luminance at 100 cd/m2 . In reality, there is a whole family of curves of similar 

shape with a minimum at the adapting luminance. The dashed lines are the contrast 

sensitivities predicted by the parabolic model. 

Figure 5. The pattern used for sampling pixel intensities on the breast images. The 

intensities of the breast are sampled and non-tissue regions beyond the breast are 

eliminated. 
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Figure 6. A mammogram image displayed using the standard perceptually linearized 

display and the MDC tempered display. The arrow shows the skin line. 
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TABLES 

Table 1. A comparison of the area under the ROC curve for three readers who were tested 

on a set of 75 difficult mammograms using the perceptually linear display and the MDC 

tempered display. 

Linear Display Tempered Display Difference 
Reader 1 .910 .930 .020 
Reader 2 .861 .869 .008- 
-Reader 3 •627 ;       .750        - .123 .. 
Mean (sd) .799 .850 .050 (.063) 

Table 2. A comparison of the time to the first decision in seconds for three readers who 

were tested on a set of 75 difficult mammograms using the perceptually linear display and 

the MDC tempered display. 

Linear Display Tempered Display Difference 
Reader 1 76 51 -25 
Reader 2 55 84 29 
Reader 3 51 47 -4 
Mean (sd) 61 61 0(27) 
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Figure 2. The bottom curve is a final MDC lookup table and the top curve is the CRT 
input-output transfer characteristic. Both curves share a common pixel driving level axis. 
The non-linearity of the MDC curve is exaggerated for illustrative purposes. The actual 
difference from the linear curve is usually more subtle. The effect of the MDC lookup 
table on the displayed image can be seen by following the dotted lines that extrapolate 
from the image pixel value to the display luminance. 



Figure   3 

Figure 3. The minimal detectable contrast (MDC) test pattern with typical observer 
responses indicated by the stars. 
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Figure 4.   The solid lines are examples of two contrast-sensitivity curve from the work of 
Heinemann (4), one with an adapting luminance at 10 cd/m2 and the other with an 
adapting luminance at 100 cd/m2 . In reality, there is a whole family of curves of similar 
shape with a minimum at the adapting luminance. The dotted lines are the contrast 
sensitivities predicted by the parabolic model. 
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